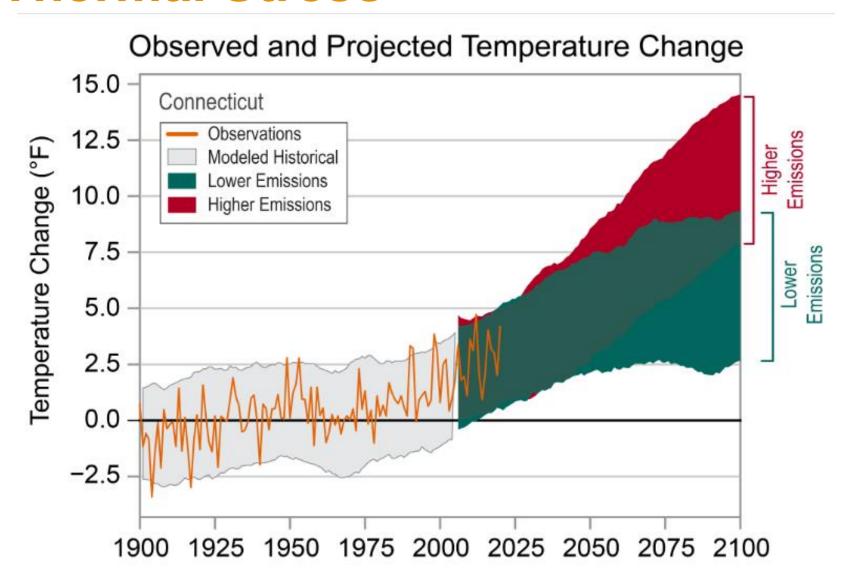


Climate Resilient Energy Codes for Multifamily Affordable Housing

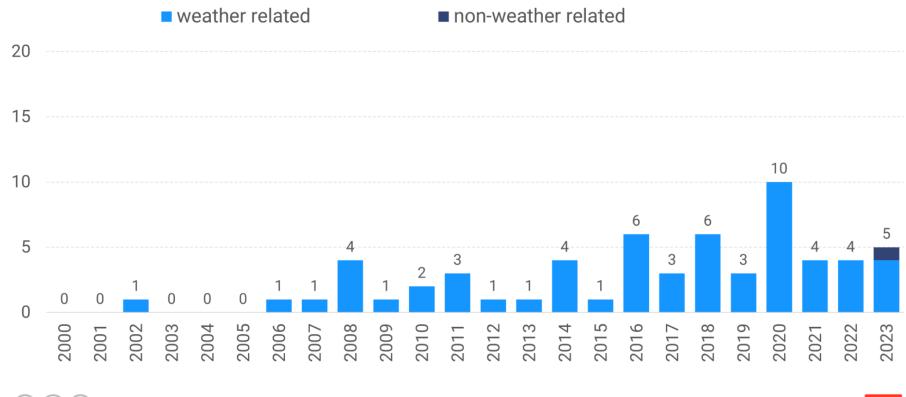
This work is supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Building Technologies Office Award Number DE-FF0010940.



"Resilience"

- Capacity for buildings and infrastructure and their users or occupants, to withstand, respond to, and recover from different forms of acute and chronic stressors, shocks, and disruptions.
- Thermal Stress
- Grid Disruption

Thermal Stress



Grid Disruption

Power Outages in Connecticut

Number of outages affecting Connecticut and at least 50,000 customers from 2000 to 2023

Data Source: U.S. Department of Energy, Form OE-417

What's a climate resilient energy code?

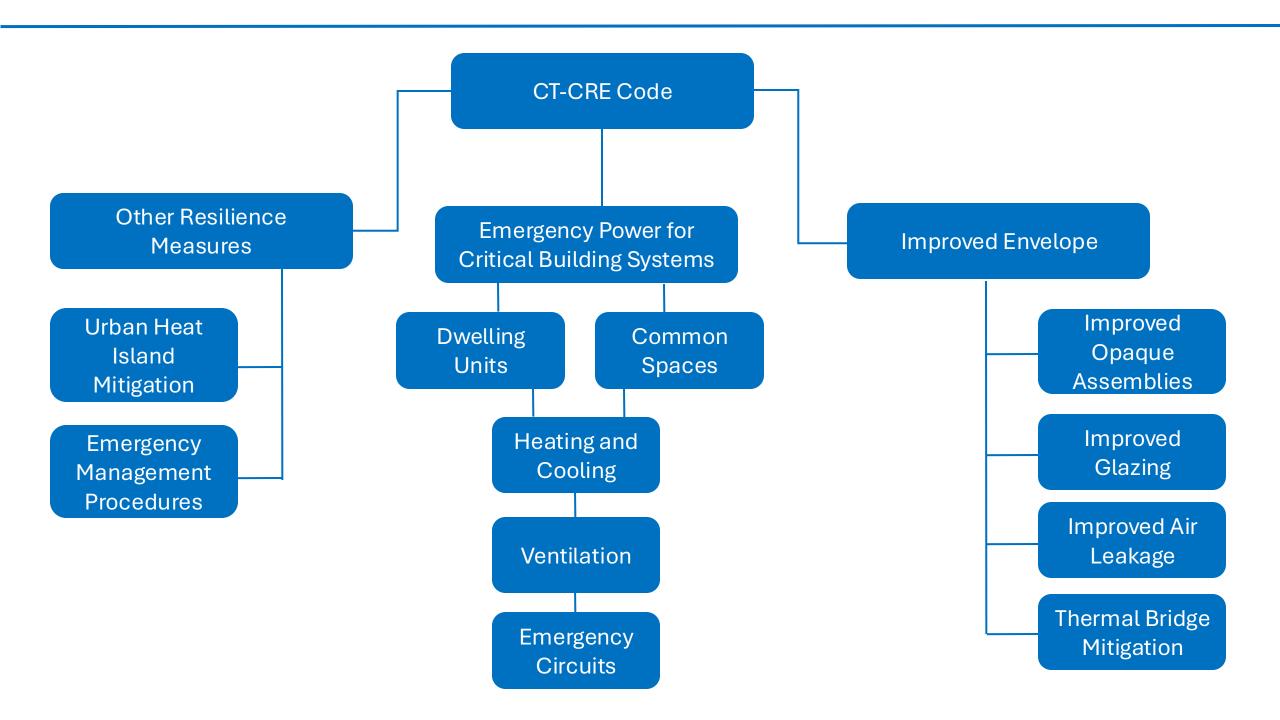
Designed to enhance a building's ability to continue providing heating, cooling, fresh air, access to water, plugs for essential devices (medical devices, phone charging, refrigeration) and comfortable conditions (temperature, humidity, etc.) in order to help occupants more safely shelter in place during severe weather events or power outages.

Improved Comfort

Increased Safety

Reduced Costs

Peace of Mind



Code Framework

- Overlay code ammendments
- IECC Residential
- o IECC Commercial
- o IBC
- ASHRAE (Future Work)

Climate Resilient Energy (CRE) Code Thermal resilience metric analysis

Standard Effective Temperature (SET)

 SET is an effective indoor temperature metric that accounts for indoor dry-bulb temperature, relative humidity, mean surface radiant temperature, and air velocity, as well as the activity rate and clothing levels of occupants.

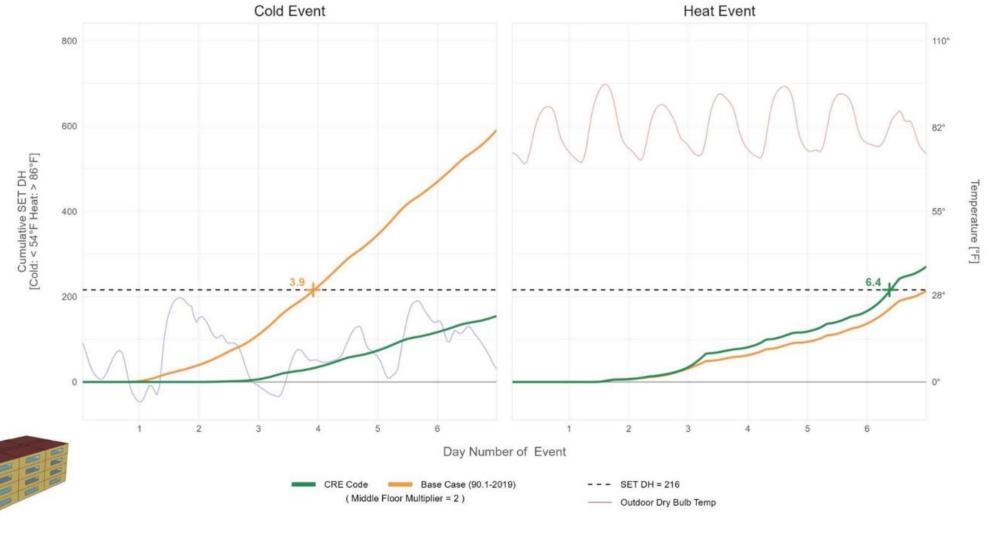
SET Degree Hours

- SET degree hours are the number of degrees above or below a specified indoor comfort threshold summed over a specified period.
- This study uses the comfort thresholds referenced in the LEED pilot credit (IPpc100, USGBC 2022).
 - Comfort threshold: SET degrees < 54°F for extreme cold and SET degrees > 86°F for extreme heat
 - To earn the pilot credit, the cumulative SET degree hours above or below the threshold shall not exceed 216 degrees over a 7-day period.
- This study provides SET degree hours
 - Occurring over 3 days and 7 days
 - Under no power conditions
 - During extreme heat and extreme cold
 - On average based on all apartment units in the building
 - For each apartment unit in the building

Climate Resilient Energy (CRE) Code Thermal resilience impact summary

Average SET Degree Hours per apartment unit*

			Extreme Cold			Extreme Heat				
			3 days 7 days		3 days		7 days			
	Building		SET DH	%	SET DH	%	SET DH	% r	SET DH	%
Location	Туре			redux		redux		edux		redux
Brainard	Midrise	Base	111		592		32		214	
		CRE	6	94%	155	74%	35	-10%	271	-27%
	Highrise	Base	111		778		30		260	
		CRE	51	54%	229	71%	27	11%	269	-4%
	Lowrise	Base	948		2,885		220		752	
		CRE	628	34%	2,214	23%	267	-21%	979	-30%
Bradley	Midrise	Base	131		676		22		121	
		CRE	13	90%	203	70%	22	4%	143	-18%
	Highrise	Base	128		886		21		149	
		CRE	61	52%	282	68%	15	27%	130	13%
	Lowrise	Base	1,109		3,274		215		703	
		CRE	768	31%	2,582	21%	256	-19%	916	-30%


^{*} SET DH values assessed during no power conditions. Values higher than 216 over a 7 day period indicate non-livable conditions unless sufficient backup power is provided.

Source: IIJA Technical Assistance

Midrise Apartment Average 'Occupied' Unit

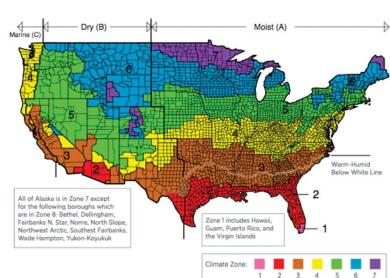
Battery Size (kWh)

		Resilient Power₁		
Solar		46 kW		
Battery		60 kW / 246 kWh		
Financial Returns				
Capital Cost		\$503,800		
ITC	\$149,500			
Capital Cost - Tax Benefit		\$354,300		
IRR		5.9%		
NPV @6%, 20yrs		(\$900)		
Simple Payback (years)		8.2		
Utility savings	First Year	20 Years		
Energy Savings	(\$4,440)	(\$122,028)		
Demand Savings	\$6,809	\$191,267		
Other Savings	\$0	\$0		
Revenue & Cash Flow	First Year	20 Years		
Total Utility Savings	\$2,369	\$69,239		
RRES Buy-All Incentive	\$21,886	\$417,546		
CT Energy Storage Solutions Incentive	\$155,255	\$205,728		
Total O&M Expenses	(\$4,939)	(\$120,007)		
Replacement capex	\$0	(\$71,821)		
Capital Cost after ITC	\$0	(\$354,337)		
Cash flow	\$174,571	\$146,347		

Critical Load

	10%	15%	20%	30%	40%
185	72	43	26	15	11
246	72	59	39	22	15
372	72	72	62	35	25
440	72	72	72	42	29
558	72	72	72	54	37

Typical Endurance (hrs)


185	26	18	13	7	5
246	34	26	19	11	7
372	54	40	29	19	13
440	66	49	36	24	16
558	72	63	50	29	23

Minimum Endurance (hrs)

Source: American Microgrid Solutions

Next Steps

- In CT
 - Finalize Code
 - Calibrate Envelope Measures
 - Refine Through Pilot Projects
 - Coordinate w/ DOH, FHA, DEEP, for Integration Into Policy and Programs
- Expand to More Climate Zones
- Develop Performance Path

